Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations.
نویسندگان
چکیده
Nucleotides are important extracellular signaling molecules. At least five mammalian P2Y receptors exist that are specifically activated by ATP, UTP, ADP, or UDP. Although the existence of ectoenzymes that metabolize extracellular nucleotides is well established, the relative flux of ATP and UTP through their extracellular metabolic products remains undefined. Therefore, we have studied the kinetics of accumulation and metabolism of endogenous ATP in the extracellular medium of four different cell lines. ATP concentrations reached a maximum immediately after change of medium and decreased thereafter with a single exponential decay (t(1/2);1 approximately;230-40 min). ATP levels did not fall to zero but attained a base-line concentration that was independent of the medium volume and of the initial ATP concentration. Although the base-line concentration of ATP remained stable for up to 12 h, [gamma-(32)P]ATP added to resting cells as a radiotracer was completely degraded within 120 min, indicating that steady state reflected a basal rate of ATP release balanced by ATP hydrolysis (20-200 fmol x min(-)(1) x cell(-)(6)). High performance liquid chromatography analysis revealed that the gamma-phosphate of ATP was rapidly, although transiently, transferred during steady state to species subsequently identified as UTP and GTP, indicating the existence of both ecto-nucleoside diphosphokinase activity and the accumulation of endogenous UDP and GDP. Conversely, addition of [gamma-(32)P]UTP to resting cells resulted in transient formation of [gamma-(32)P]ATP, indicating phosphorylation of endogenous ADP by nucleoside diphosphokinase. The final (32)P-products of [gamma-(32)P]ATP metabolism were [(32)P]orthophosphoric acid and a (32)P-labeled species that was further purified and identified as [(32)P]inorganic pyrophosphate. In C6 cells, the formation of [(32)P]pyrophosphate from [gamma-(32)P]ATP at steady state exceeded by 3-fold that of [(32)P]orthophosphate. These results illustrate for the first time a constitutive release of ATP and other nucleotides and reveal the existence of a complex extracellular metabolic pathway for released nucleotides. In addition to the existence of an ecto-ATPase activity, our results suggest a major scavenger role of ecto-ATP pyrophosphatase and a transphosphorylating activity of nucleoside diphosphokinase.
منابع مشابه
Identification of an ecto-nucleoside diphosphokinase and its contribution to interconversion of P2 receptor agonists.
The P2Y4 receptor is selectively activated by UTP. Although addition of neither ATP nor UDP alone increased intracellular Ca2+ in 1321N1 human astrocytoma cells stably expressing the P2Y4 receptor, combined addition of these nucleotides resulted in a slowly occurring elevation of Ca2+. The possibility that the stimulatory effect of the combined nucleotides reflected formation of UTP by an extra...
متن کاملNucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade.
The involvement of extracellular nucleotides and adenosine in an array of cell-specific responses has long been known and appreciated, but the integrative view of purinergic signalling as a multistep coordinated cascade has emerged recently. Current models of nucleotide turnover include: (i) transient release of nanomolar concentrations of ATP and ADP; (ii) triggering of signalling events via a...
متن کاملRelease and interconversion of P2 receptor agonists by human osteoblast-like cells.
Nucleotides, acting as agonists at P2 receptors, are important extracellular signaling molecules in many tissues. In bone they affect both bone-forming osteoblast and bone-resorbing osteoclast cell activity. The presence of nucleotides in the extracellular microenvironment is largely determined by their release from cells and metabolism by ecto-enzymes, both of which have scarcely been studied ...
متن کاملSecreted and cell-associated adenylate kinase and nucleoside diphosphokinase contribute to extracellular nucleotide metabolism on human airway surfaces.
5'-Nucleoside triphosphates (NTP) are present in the liquid covering airway surfaces and mediate important physiologic events through their interaction with P2-nucleotide receptors. Activation of airway P2Y(2) receptors, for example, stimulates ciliary beat frequency, chloride/liquid secretion, and goblet cell degranulation. We, therefore, have studied the metabolic pathways that regulate the c...
متن کاملThe evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells.
Extracellular purines are important signalling molecules in the vasculature that are regulated by a network of cell surface ectoenzymes. By using human endothelial cells and normal and leukaemic lymphocytes as enzyme sources, we identified the following purine-converting ectoenzymes: (1) ecto-nucleotidases, NTP diphosphohydrolase/CD39 (EC 3.6.1.5) and ecto-5'-nucleotidase/CD73 (EC 3.1.3.5); (2)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 40 شماره
صفحات -
تاریخ انتشار 2000